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The integral Hellmann-Feynman (IHF) theorem has been applied to various wavefunctions 
representing the 1A u state of acetylene with a view to testing traditional explanations of the excited 
state geometry. When LCAOSCF wavefunctions are used, the electronic energy changes associated 
with the individual corresponding orbitals (CMO's) are in sympathy with the trend in orbital (i.e. MO) 
energies suggested by Walsh. However, when LMO wavefunctions based on hybrid AO's are employed, 
the IHF results are against all experience; and imply that a change in hybridisation, from sp to sp 2, 
is not a viable model for the change in geometry. 

Introduction 

The experimental fact [-1] that acetylene is t r a n s  bent in its first electronically 
excited state has long been of theoretical interest. The original qualitative explana- 
tion of Walsh [2] argues that, in so far as the change in molecular energy parallels 
the change in orbital energies, bending is favoured by the introduction of s 
character into the excited M O  (n o when CCH angle = 180 °) which reduces the 
orbital energy until (when CCH angle = 90 °) the a o M O  becomes almost non- 
bonding. This tendency is opposed by the b, MO (corresponding to bonding z~ 
in the linear case) which becomes destabilised by increasing s character. The 
experimental bond angle [1] is almost exactly 120 °, and it is tempting to suggest 
[3], in terms of localised molecular orbitals (LMO's), that these changes might 
equivalently be described by a change in hybridisation from sp  to sp  2. 

The first SCF calculation on acetylene to consider all the electrons was due 
to Burnelle [-4] and confirmed the trend in 7c 0 - a  o orbital energy suggested by 
Walsh; but it failed to predict the correct geometry for the excited 1A u state from 
the total energy calculation, probably because of excessive integral approximations. 
Most of the theoretical studies of acetylene have since been concerned with the 
linear molecule, but recently Kam m er  [-5] has reported SCF and CI calculations 
of linear and bent acetylene which agree extensively with the spectroscopic facts. 
Accurate a b - i n i t i o  wavefunctions must provide the ultimate explanation for the 
shapes of molecules: but it may be difficult in some cases to relate the concepts 
of exact M O  theory to the older, qualitative orbital theories. Peyerimhoff, Buenker 
and Allen [6] have shown that the success of the Walsh rules in predicting the 
geometries o f A H  2 and AH 3 molecules with 6 - 9  valence electrons can be attributed 
to the fact that for these molecules changes in the sum of the SCF one electron 
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energies are approximately parallel to changes in the total energy. On the other 
hand, Pan and Allen [7] have shown that in HCN, with ten valence electrons, 
the total energy and total orbital energy curves diverge as the bond angle is 
decreased from 180 ° . However, it must be pointed out that in the work cited 
above [6, 7] it has been assumed that the MO energies in Walsh diagrams are 
the one-electron eigenvalues of closed-shell SCF Hamiltonianso The geometries 
of open-shell molecules and of excited states are discussed using the lowest virtual 
orbitals - which do not have the same physical meaning as the MO's used in 
formulating the SCF Hamiltonians. Another difficulty in the interpretation of ab- 
initio wavefunctions arises in the localised orbital approach: that wavefunctions 
expressed in terms of extended atomic basis sets or, as in the calculations [5-7] 
cited above, in terms of gaussian lobe functions [8] may not be easy to visualise 
in terms of hybridisation. 

In principle at least, the integral Hellmann-Feynman theorem (IHF), revived 
by Parr [9J, offers a direct way of analysing the change in geometry from a one 
electron point of view. With a fixed CC bond length for each geometry, the change 
in electronic energy may be expressed as the difference of proton attraction 
operators integrated over the transition density between two configurations. The 
electronic energy change may then be analysed into contributions from the 
corresponding orbitals (CMO's) - the orbitals which diagonalise the 1-particle 
transition density matrix. Unfortunately, since the successful application of the 
IHF method to internal rotation in ethane [10], there has accrued considerable 
evidence [11-13] to suggest that simple LCAO wavefunctions do not give 
reliable IHF total energy differences. This, however, does not prevent the IHF 
theorem from giving insight into isoelectronic changes, particularly when the 
transition density is described in a way which is qualitatively correct [14]. More- 
over, the error in an IHF calculation is entirely inherent in the wavefunctions 
used and, therefore, such calculations may be regarded as tests of the molecular 
models which the waveffmctions represent. One of the objects of the present 
study of trans bent acetylene was to see if the assumption of sp 2 hybridised carbon 
might account for the geometry of excited acetylene. 

IHF Formula and the Configurations Considered 

Within the framework of the Born-Oppenheimer approximation the [HF 
energy difference between linear and bent acetylene is given by 

( ~'LIA V.eI ~'B) 
AWz= + AV,, (1) 

where ~L and ~b, are electronic states associated with the linear and bent nuclear 
frames respectively. The normal and excited states of acetylene may be represented 
approximately by the following configurations: 

1~0 + (10-0)2 (10-u)2 (2%) 2 (20-u)2 (30-g)2 (;%)2 (Ttu)2 , 

1A. (lao) 2 ( lb . )  2 (2ao) 2 (2b.) 2 (3ag) 2 (3b.) 2 (4ao) (a.) .  
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Now a direct substitution of the above wavefunctions for ~L and for ~ in 
(1) leads to a o °- indeterminacy; and it was therefore decided to calculate instead 
the energy variation of the 1A u state (1A, in the linear case) as a function of CCH 
angle. No complication in applying (1) arises from the fact that the 1A, state 
formally requires two determinants. Since the singly occupied MO's are of 
different symmetry, there are no matrix elements of A V,e between determinants 
which differ by an interchange of the spin factors of the 4% and a. orbitals. Thus 
a single determinant is adequate for the IHF calculation. CMO's for state of 
the linear and bent nuclear frames were constructed by unitary transformations 
[10] of the MSO's with identical spin factors. In terms of single occupied CMO's 
Eq. (1) becomes 

,=14 ( ~ [ A V ,  e[~p~ ) + AV,,.  (2) a w, = ,=12 

Geometry and Orbitals 

Fig. 1 shows the nuclear frame and cartesian coordinates to which all wave- 
functions are referred. 

X 1 

H~ '~ 

(-)zl  . . . . . . . . . .  C1 

o/ 

X 2 

~6 

/ 
C 2 . . . . . . . . .  -.~ z 2 

Fig 1. Coordinate system and hybrid orbitals 

The decision to fix the bond lengths was taken for an important reason. 
With bond lengths at their normal values (CH = 1.0568 A; CC = 1.208 A) a change 
in CCH angle of 60 ° produces a A V,, value of 0.45358 a.u., which is opposed to 
bending. Thus in order to predict bending one is looking for a change in electronic 
energy, A E t whose magnitude is about seven times as great as the A E t magnitudes 
for the rotation of a bond in a comparable molecule [11]. The percentage error 
in the calculation of A E~ for the bending problem will thus be considerably 
smaller than for the rotation. (Of course, the algebraic sum A E~ + A V,,, may be 
no more reliable than before.) If, however, the CC bond is allowed to relax (to 
the excited state value of 1.383 A) simultaneously with the change in CCH angle, 
then at 120 ° the value of A V,, is very small and actually in favour of the bent state. 
The value of A Ez might then also be very small - and too subtle for the wave- 
functions envisaged here. 
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Three kinds of LCAO wavefunction were cons idered: -  

a) The SCF MO's of Burnelle 

Although these wavefunctions were calculated with integral approximations 
now regarded as too severe, the LCAO coefficients give reasonable populations 
[15] and are probably not very different from the coefficients of an exact minimal 
basis calculation. They were employed here because they appear to be the only 
MO's for bent acetylene which have been reported using a Slater-type AO basis. 
The orbital exponents were: Cls,  5.7; C2s, 1.59; C2p, 1.59; and Hls ,  1.0. 

b) Two Centre MO's Constructed from Orthogonal Hybrids 

Employing precisely the same AO basis and bond lengths as in a), hybrid 
AO's were formed on each carbon atom according to 

cb i = (s + 2ipi) N i (3) 

where ~i represents an sp ~ hybrid pointing in the direction (see Fig. 1) of a 2p~ 
orbital. Apart from normalising factors, Eqs. (3) contain six unknowns (i = 1, 2, 3) 
of which three may be eliminated by orthogonality criteria, 

(~i[ ~ j )  = ~j  (4) 

and the remaining three on the assumptions that 4~ 1 and ~)2 point along the CC 
and CH bonds respectively and that 21 = 22. With these assumptions the 45~ take 
the usual forms of sp hybrids at 180 ° and sp 2 at 120 °. Taking the inner shell MO's 
to be the C ls orbitals themselves, two centre LMO's  were constructed (ignoring 
normalising factors) as follows: 

(O'I)CH : k ~  2 if- h i ,  

(O'2)CH = k(~ 5 -]- hE, 

(~)cc = G + ~4 (3ag), 

(n)cc -- q~3 - ~6 (3bu), 

(n*)cc = q~3 + 456 (4ag). 

The symbol h represents a hydrogenic ls orbital. The MO designations refer 
to the linear molecule, while corresponding non-linear species are indicated in 
parentheses. The out-of-plane G orbital is identical with the ny orbital throughout. 

Only the factor k - the polarity of the CH bond remains to be specified, 
and this was taken to be 1.09 [163 . It is interesting to note that in calculations 
by Woznicki [163 the expectation value of the 1A u state, calculated from the 
above MO's, gave a minimum in the energy curve when angle CCH = 120 °. 
(The CC bond length in Woznieki's calculation was 1.383 A, and the Mulliken 
approximation for polycentric integrals was used). 

c) Two Centre LMO's Constructed from Non-Orthogonal Hybrids 

As an alternative to the conventional sp z hybrids, it was decided to construct 
two centre MO's for the I A  u state at CCH = 120 ° from the hybrids theoretically 
determined in LMO studies [17] of ethylene from ab-initio LCAOSCF wave- 
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functions [18]. These hybrids may be represented approximately a s  s p  1"74, 

sp TM and sp TM. These hybrids are not orthogonal, and the two which are 
equivalent lie at 1.2 ° to the line of the CH bonds. Referred to Fig. 1, they are 

~1 = U l  (S + ]/i~4 Pz) 

~2 = N2 Is + 11/~.85 (Px cos 31.2 ° - Pz cos 58.8°)] 

q)3 : N3 Is + ~ ( -  Px cos 31.2 ° - Pz cos 58.8°)]. 

With these hybrids instead of(3), two centre MO's for the bent state were constructed 
exactly as in b), except that k took the ethylenic value 1.13. For  the linear molecule 
the recommended [17] hybrids were: 

• l=Nl ( s+  1]/i~.01pz); (bz=N2(s-  ll/i~.Olpz); ~ 3 = p x ;  

and the value of k was 1.37. 
Both procedures - b) and c) - give LMO's  which are not orthogonal (the 

largest overlap is ~ 0.2), and prior to forming CMO's, the LMO's were Schmidt 
orthogonalised. These processes did not prevent the form of the hybrids from 
being approximately recognised in the final CMO's. 

Overlap and nuclear attraction integrals over basis AO's - necessary for 
implementing (2) - were calculated by methods discussed previously [11]. 

Results and Discussion 

Table 1 gives the various contributions to A E~ for the change in CCH angle 
180 °--,  120 ° (trans), using the three different wavefunctions. (The symmetry 
designations are appropriate throughout because, in the LMO wavefunctions, 
inner shell and CH orbitals were symmetry adapted). Tables 2 and 3 show the 
LCAO coefficients for the CMO's derived from Burnelle's wavefunctions. 

Table 1. Contributions to AE~ (a.u.) for 180 ° (linear)--+ 120 ° (trans) 

C M O  LCAOS C F  wavefunctions a) L M O  wavefunctions b) 

pair Contribution to A E~ Contribution to A E~ 

L M O  wavefunctions c) 

Contribution to A E t 

lag -0 .0360  -0 .0440  -0 .0365 -0 .0356 -0 .0339 
lb.  -0 .0360  -0 .0360  -0 .0360  -0 .0360  -0 .0322 
2a o 0.0760 0.0069 -0 .0432  -0 .0963 -0 .0553 
2b. -0 .0867  -0 .0867 -0 .0017 -0 .0017 -0 .0473 
3ao -0 .0876  -0 .0561 -0 .0705 -0 .0818 -0 .0691 
3b. 0.0230 0.0230 -0 .0389 -0 .0389 -0 .0017 
a u -0 .0396  -0 .0396 -0 .0369 
4a o -0 .0454  0.0639 

-0 .0330  
-0 .0322 
-0 .1268 
-0 .0473 
-0 .0788 
-0 .0017 

0.0848 

Total --0.1869 -0 .2483 -0 .2664  -0 .2264  

A V.. 0.4536 0.4536 
AW~ 0.0176 -0 .0392  

--0.2774 --0.2360 

0.4212 
--0.0922 

13 Theoret. chim. Acta (Berl.) Vol. 25 
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Table 2. Corresponding orbitMs (~ spin factors) from Burnelle's MO's, 180 ° (linear)-+ 120 ° (trans) 

CMO Overlap Coefficients a 

pair integral C a ls C 1 2s C a 2pz C 1 2px C 1 2py H 1 ls 

1% 0.99996 0.70572 0.00425 -0.00048 0.00000 0.0 0.00160 
0.70557 0.00652 -0.00199 0.00098 0.0 -0.00151 

lb~ 0.99993 0.70497 0.01816 0.00541 0.00038 0.0 0.00036 
0.70466 0.02272 0.00754 0.00091 0.0 -0.00137 

2% 0.85993 -0.07576 0.27100 -0.32145 0.00000 0.0 0.35193 
-0.06278 0.23379 -0.36578 0.13674 0.0 0.36132 

2b, 0.92334 -0.10007 0.33241 -0.20515 0.26721 0.0 0.30779 
-0.11440 0.48657 -0.11937 0.11384 0,0 0.34372 

3% 0.99883 0.14504 -0.36587 -0.38596 0.00000 0.0 0.03904 
0.14135 -0.32068 -0.41790 0.00355 0.0 -0.02095 

3b u 0.98468 -0.04835 0.16225 -0.10012 -0.54750 0.0 0.15022 
-0.05433 0.11427 -0.34478 -0.51949 0.0 -0.05075 

a o 1.00000 0.0 0.0 0.0 0.0 0.60923 0.0 
0.0 0.0 0.0 0.0 0.60923 0.0 

a Coefficients of the other AO's may be found by symmetry. 

Table 3. Corresponding orbitals (fl spin factors) from Burnelle's MO's, 180 ° (linear) -~ 120 ° (trans) 

CMO Overlap Coefficients a 

pair integral Ca ls C1 2s C a 2pz C a 2px Ca 2py H a ls 

lag 1.00000 0.64702 -0.23051 -0.20551 0.14463 0.0 0.00018 
0.64701 -0.23004 -0.20578 0.14484 0.0 -0.00043 

lb, 0.99993 0.70497 0.01816 0.00541 0.00038 0.0 0.00036 
0.70466 0.02272 0.00754 0.00091 0.0 -0.00137 

2a 0 0.92956 -0.06895 0.24960 -0.31474 0.27165 0.0 0.33538 
-0.06263 0.24347 - 0.38997 0.82680 0.0 0.35467 

2b u 0.92334 -0.10007 0.33241 -0.20515 0.26721 0.0 0.30779 
-0.11440 0.48657 -0.11937 0.11384 0.0 0.34372 

3ao 0.99990 0.31734 - 0.30326 -0.26692 0.16737 0.0 -0.00018 
-0.31739 -0.30289 -0.26703 0.16767 0.0 -0.00065 

3b, 0.98468 -0.04835 0.16225 -0.10012 -0.54750 0.0 0.15022 
-0.05433 0.11427 -0.34478 -0.51949 0.0 -0.05075 

4% 0.98689 0.02710 -0.02032 -0.19938 -0.80196 0.0 0.11360 
0.01444 0.13524 -0.30218 -0.74331 0.0 -0.10059 

" Coefficients of the other AO's may be found by symmetry. 

F o r  t h e  L C A O S C F  w a v e f u n c t i o n s  a) t h e  t o t a l  A E~ is n o t  q u i t e  l a r g e  e n o u g h  

to  c o v e r  A V, ,  a n d  so  f a v o u r  b e n d i n g .  H o w e v e r ,  i t  is b e l i e v e d  t h a t  t h e  c o n t r i b u t i o n s  

f r o m  t h e  C M O ' s  a r e  q u a l i t a t i v e l y  c o r r e c t .  T h e  f ac t  t h a t  t h e r e  is s o m e  i n t e r n a l  

c o n s i s t e n c y  in  B u r n e l l e ' s  w a v e f u n c t i o n s  m a y  b e  i n d i c a t e d  b y  t h e  f ac t  t h a t  w h e n  
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A E  l for 180°---~ 120 ° is compared to the value of AE~ for 180°--* 150 ° plus A E  l 

for 150°--~ 120 °, the result is conservative to within 1%. The contributions of 
the CMO pairs show a considerable agreement with the ideas of Walsh, who, it 
should be stressed, was thinking in terms of the change in orbital (i.e. self) energies 
rather than one-electron transition energies. Thus, the 4ag CMO pair is in favour 
of bending, and the 3b, opposes bending. From the coefficients in Table 2 it would 
appear that this is due to the introduction of Pz rather than s character into the 
n orbitals. Walsh's ideas are also supported by the behaviour of the 3a o orbital 
(CC o- bond) which becomes less favourable to bending through the acquisition 
of Px character (in the fl set) than it is when dominated by s and Pz (in the ~ set). 
However, CMO's being unitary mixtures of MO's of the same symmetry, it is 
possibly unwise to look too closely at the form of individual CMO's; but rather 
one should compare the total contribution of the a o orbitals when mixed with 4a o 

(i.e. in the fl set) with the total contribution of the a o orbitals in the e set. The 
difference is nearly 0.1 a.u. 

For the wavefunctions b) based on hybrid AO's, the results are quite different 
- and unacceptable. Firstly, the 4a o CMO pair is opposed to bending, and the 
set of orbitals which contains the excited orbital (the fl set) gives a smaller A E t 
than the set which does not. Worse still, the orbitals of the e set actually represent, 
on this model, the orbitals of the closed shell ground state, 1A o. Twice the value 
of A E z for the c~ CMO's thus represents the change in electronic energy of the 
I A  o state, 180 ° ---* 120 °. Since this quantity exceeds A V,, in magnitude, the hybrid 
wavefunctions indicate a non-linear ground state for acetylene. 

To show that these conclusions were not merely dependent on the arbitrary 
factors in the LMO wavefunctions b), the IHF calculations were repeated with 
various CH bond polarities. First the value of k was increased by 10%; then the 
hydrogenic exponent was changed to 1.2. Finally, the calculations were repeated 
using the excited CC bond length, 1.383 A. Although the increase in bond length 
reduced the magnitudes of both  A V,, and A E l, none of the changes mentioned 
materially affected the conclusions drawn from the second column of Table 2: 
the distribution of AE~ among the CMO's remained much the same; and the 
ground state orbitals were still more favourable to bending than the excited state 
orbitals. 

The calculations using LMO wavefunctions c) were undertaken to counter 
possible objections to arbitrariness in the actual construction of the LMO's 
in b) - the two centre approximation; the hybridisation determined on CCH 
angle; and the Schmidt orthogonalisation which ignores orthogonality with the 
unoccupied LMO's. The hybrids and k values in wavefunctions c) were specially 
determined for two centre MO's on theoretical criteria [14], from ab-initio wave- 
functions with carefully optimised exponents [15]. These exponents were used in 
the IHF calculation, together with bond lengths appropriate to ethylene [15]. 
The third column of Table 3 shows that the conclusions are the same as for 
wavefunctions b). 

The calculations described in this work have employed very simple wave- 
functions. It will be interesting to see if the conclusions are confirmed by LMO 
and IHF studies of more sophisticated wavefunctions, such as those reported by 
Kammer [4]. 

13" 
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